

Satellite Data and Regional NWP at the Environmental Modeling Center

Jacob Carley, IMSG and NCEP/EMC jacob.carley@noaa.gov

Thanks to colleagues at NCEP/EMC for providing much of the material and information in this talk.

2015 NOAA Satellite Science Week Meeting

Satellite Data and Regional NWP at the Environmental Modeling Center

NCEP

Jacob Carley, IMSG and NCEP/EMC jacob.carley@noaa.gov

Current uses

- Real time assimilation of satellite radiances from a variety of instruments
- Comprehensive satellite data monitoring

- Current testing and *some* next steps
 - Switching on new satellite data for assimilation in the NAM
 - Univ. Wisc./CIMSS GOES Imager data for sky cover analysis in RTMA/URMA
 - GOES-R testing using SEVIRI data with hourlyupdated NAM placed over Africa
- What's next? *Some* long(er) term thoughts
 - Satellite data assimilation and high impact weather
 - Use of GOES-R GLM lightning observations in NWP

Data Assimilation in the current NAM/NDAS

- NAM North American Mesoscale forecast system
 - Runs 4x daily at 00, 06, 12, 18Z
 - Short-range mesoscale NWP system for the U.S. which provides guidance to day 3.5
- Cycled DA is currently only done on the parent, 12 km domain
 - Each cycle has a 12hr pre-forecast DA period with a 3 hr update frequency
- Uses the Gridpoint Statistical Interpolation system (GSI)
- Hybrid ensemble-3DVar approach with passive use of the 80 EnKF members from the GDAS to provide multivariate flow dependence
- Assimilates full range of conventional (e.g. surface, ship, profiler, mesonests, etc.), Doppler radar radial velocities & VAD, and suite of satellite observations (radiances, AMVs, and cloud products)

Heading toward NAMRR: NAM Rapid Refresh → Hourly updates

- Important step toward High Resolution Ensemble Forecast System with Rapid Refresh
- NAMRR + RAP/HRRR Foundation

Satellite Radiance Data Currently Used in the NAM/NDAS

- Satellites and instruments
 - NOAA15: AMSUA
 - NOAA18: AMSUA, MHS
 - NOAA19: AMSUA, MHS
 - METOP-A: HIRS4, AMSUA, MHS, IASI
 - GOES15: SNDR1-4
 - AQUA: AIRS, AMSUA

2015 NOAA Satellite Science Week Meeting

After thinning and QC – satellite radiances make up about 40% of all observations used in a single NDAS/NAM analysis.

2015 02 20 00Z Analysis				
Obs Type	Nobs	% of Total		
Surface Pressure	54296	5.2 %		
Temperature	172676	16.6 %		
Wind	284938	27.3 %		
Moisture	79866	7.7 %		
NEXRAD Radial Wind	9978	0.96 %		
Precipitable Water	362	0.03 %		
GPS	9436	0.91 %		
Radiance	430491	41.3 %		
Total Obs	1042043	100.0 %		

4

Upcoming Changes for the NAM/NDAS Not exhaustive!

- Upgrades to NMMB prediction model
 - CONUS (4 km) and Alaska (6 km) nests \rightarrow 3 km
 - Microphysics changes to address locally heavy QPF and increase stratiform QPF
 - Test shallow convection in NAM nests \rightarrow improved convective initiation
 - Radiation changes \rightarrow improve 2 m temperatures
- New observations
- SEVIRI, NOAA17-18, SSMIS (F16-F18)
- Metop_B (IASI, HIRS4, AMSUA, MHS)
- NPP (ATMS, CRIS)
- Tall tower + wind turbine nacelles (result of WFIP project)
- Data assimilation
- Move to an hourly cycle (+ cycle for 3 km CONUS nest)
 - NAM-RR (NAM Rapid Refresh)
- Tropical cyclone relocation
- 4DEnVar (tentative)
- Direct analysis of hydrometeors (tentative)
- Improve use of Doppler radial wind observations for 3 km domains
- Digital filter with radar-derived temperature tendencies

center lat = 54.00 center lon = -106.00

Keeping track of all the radiance data is vital

- Use a comprehensive monitoring package
- Monitor usage and stats in real time, quickly catch problems

2015 NOAA Satellite Science Week Meeting

Thanks to Ed Safford for this slide

Improvements in use of radiances: Enhanced radiance bias correction scheme (Zhu et al. 2014)

- Automatically detect any new/missing/recovery of radiance data and initialize new radiance data
- Quickly capture any changes in the data and the system

Any new radiance data can be used now with initial radiance bias correction set to be zero

- Operational in the NAM/NDAS as of the August, 2014 upgrade
- Zhu, Y., Derber, J., Collard, A., Dee, D., Treadon, R., Gayno, G. and Jung, J. A. (2014), Enhanced radiance bias correction in the National Centers for Environmental Prediction's Gridpoint Statistical Interpolation data assimilation system. Q.J.R. Meteorol. Soc., 140: 1479–1492. doi: 10.1002/qj.2233

Applications of GSD's Cloud Analysis Package for the NAM (available in the GSI)

- Includes DDFI with radar derived temperature tendencies
- Cloud and hydrometeor modifications based upon satellite (e.g. NASA Langley data), surface observations, and radar observations
- Capability is in developmental NAMRR (hourly-update NAM)

2015 NOAA Satellite Science Week Meeting

NASA Langley cloud base height

Thanks to Shun Liu for this slide

Gap mitigation study with NDAS/NAM (ongoing)

- Risk of a gap in polar satellite data in the afternoon orbit
 - Between the time that the current polar satellite is expected to reach the end of its life and when the next satellite is expected to be in orbit and operational
- What kind of impact migh this have on the NDAS/NAM? Study which covers ~60 days
- Results are very preliminary and work is ongoing

Observing System	Orbit	NAMP (Ops NAM)	NOPM	NOSAT
Conventional data		>	>	7
AMVs (AQUA)	РМ	>	х	x
AQUA/AIRS	РМ	>	х	x
NOAA-19 AMSU- A, MHS	РМ	2	х	x
METOP ASCAT, IASI, AMSU-A, MHS	АМ	*	>	x

* Results from only ~3 days of verification

Assimilation of SEVIRI data as GOES-R Proxy in NAMRR

March 1-31, 2012 \rightarrow Covering Atlantic, portions of Europe, and Africa

Two Experiments:

Very small improvement – <u>not unexpected</u>. Next step is to focus on cloudy radiances.

Satellite Radiances include:

AMSUA (METOP-a; NOAA-15; NOAA-18; NOAA-19)

Thanks to Xiaoyan Zhang for this slide

New RTMA/URMA - Sky Cover Analysis

- Collaboration with J. Gerth of Univ. Wisconsin/CIMSS
 - Established NCEP data feed for GOES Imager Sky Cover data produced via GOESR algorithms for use in RTMA/URMA
 - Becoming operational in RTMA/URMA ~ Early April, 2015

2015 NOAA Satellite Science Week Meeting

Satellite DA Challenges for Regional

- Valuable satellite data is missed
 - Due to the nature of our limited domain
 - Earlier time cutoff for data (NAM runs before GFS)

212

214

202

204

208

218

222 226 228 232 236 238

What's next?

- Improved use of satellite radiances over land
 - Increasingly important challenge as we focus on convection-allowing domains that feature little coverage over water bodies
 - e.g.; Zheng et al. (2012, *JGR*)
- Use of lightning data
 - GOES-R GLM: Will provide coverage over a very large area and, unlike WSR-88D radar, there will be no have coverage limitations in complex terrain or ocean areas
 - e.g.; Mansell et al. (2014, *MWR*),
- Cloudy radiance assimilation
 - A challenging, yet promising task being actively pursued at EMC (talk by A. Collard during Session 1)
 - Especially challenging for finer resolution grids and high-impact weather (e.g. convection)
 - Microphysics
 - e.g.; Errico (2007, JAS), Otkin (2012, JGR)

What's next? \rightarrow The fusion of all of these valuable data

- A. Storm-scale DA of radar observations
- B. Storm-scale DA of lightning observations (e.g. GOES-R GLM)
- C. Storm-scale DA of satellite observations
- D. All of the above (including conventional observations)

A big challenge and will certainly take time!

Already some encouraging work being done for this at convectionallowing scales, examples:

Jones et al. (2015, 2014, 2013, MWR) \rightarrow Satellite + radar

Johnson et al. (2015, MWR – In press) \rightarrow Multiscale: Conventional + radar

Thanks! Questions?

See talk by A. Collard from Session 1 for information on cloudy radiance DA at NCEP with the GFS